
SPARQLRDFQuery Language Reference v1.8
Copyright © 2005, 2006 Dave Beckett.
Latest version: <http://www.dajobe.org/2005/04-sparql/>
Comments to: dave@dajobe.org

1. RDF Model and SPARQL RDF Terms Syntax

RDF Graph: A set of RDF Triples

RDFTriple: A triple (3-tuple) of:

Subject: IRI
or Blank Node

Predicate: IRI

Object: IRI or Blank Node
or Literal

URI: An absolute IRI which may include a # fragment.
<http://www.w3.org/>
<http://example.org/#fragment>
<abc.rdf> Relative IRI resolved against base IRI.
<> Base IRI, usually the query document IRI
ex:name IRI shorthand using XML-style prefix ex and local name.

Declared with PREFIX (SPARQL) or @prefix (Turtle)

RDF Literal: A Unicode string with an optional language tag.
“hello” “bonjour”@fr

RDFTyped AUnicode string and datatype IRI for encoding datatypes.
Literal: “abc”^^<http://example.org/myDatatype>

abbreviated with an XML QName style as:
“10”^^xsd:integer
Short forms for several common datatypes:
-10 “-10”^^xsd:integer
1.2345 “1.2345”^^xsd:decimal
true “true”^^xsd:boolean

Blank Node: A node in a graph with a local name. The scope of the name is the RDF graph.
_:node

2. Common RDF Namespaces and Prefixes

Namespace Common Prefix Namespace URI
RDF rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
Dublin Core dc: http://purl.org/dc/elements/1.1/
FOAF foaf: http://xmlns.com/foaf/0.1/
XML Schema Datatypes xsd: http://www.w3.org/2001/XMLSchema#
RDFS rdfs: http://www.w3.org/2000/01/rdf-schema#
OWL owl: http://www.w3.org/2002/07/owl#

3. SPARQL Query Language Reference

Based on SPARQL Query Language 23 November 2005
<http://www.w3.org/TR/2005/WD-rdf-sparql-query-20051123/>.

RDFTerm: A part of an RDF Triple. An IRI, Blank Node or a Literal.
<uri> _:b1 “Literal”@en “abc123”^^my:datatype

Query Variable: Identifiers for binding to RDF Terms in matches.
?a / $b or in lists: $name $title $place

Anonymous
Query Variable:

Blank Nodes in a graph pattern act as variables that cannot be SELECTed
_:abc

Triple Pattern: An RDF Triple with Query Variables or blank nodes allowed in each term:
<http://example.org/abc> ?x “Hello”
?subject ?predicate ?object
Turtle abbreviations can be used for Triple Patterns, see Section 4.

Graph Pattern: A block that matches part of the queried RDF graph.
Basic
Graph Pattern:

A set of Triple Patterns binding RDF Terms in the graph to variables.
Written as a {..} block with '.' separating the triple patterns:
{ <http://example.org/abc> ?y “Hello” .
?subject $predicate “Literal” }

Group
Graph Pattern:

A graph pattern containing multiple graph patterns which must all match
{ { ?person rdf:type foaf:Person }
{ ?person foaf:name “Dave” } }

Optional
Graph Pattern:

A graph pattern which may fail to match and provide bindings but not
cause the entire query to fail. Written with OPTIONAL before a graph
pattern.
OPTIONAL { ?person foaf:nick ?nick }

Union
Graph Pattern:

A pair of graph patterns any of which may match and bind the same
variables. Written with the UNION keyword between two graph patterns.
{ ?node ex:name ?name } UNION
{ ?node vcard:FN ?name }

Graph
Graph Pattern:

A keyword for specifying a graph name to use or to return a graph name
as a binding. Written with the GRAPH keyword before a graph pattern.
GRAPH <http://example.org/myfoaf>
{ ?person foaf:name ?name }

GRAPH ?graph { ?person foaf:name ?name }
Value Constraints: A boolean expression in a graph pattern over query variables that

constrains matched graph patterns.
{ ?item ex:size $size . FILTER ($size < 10) }

4. SPARQL Query Language Structure

Prologue (optional) BASE <iri>
PREFIX prefix: <iri> (repeatable)

Query Result forms (required, pick 1) SELECT (DISTINCT)sequence of ?variable
SELECT (DISTINCT)*
DESCRIBE sequence of ?variable or <iri>
DESCRIBE *
CONSTRUCT { graph pattern }
ASK

Query Dataset Sources (optional) Add triples to the background graph (repeatable):
FROM <iri>
Add a named graph (repeatable):
FROM NAMED <iri>

Graph Pattern (optional, required for ASK)WHERE { graph pattern [FILTER expression]}
Query Results Ordering (optional) ORDER BY ...
Query Results Selection (optional) LIMIT n, OFFSET m

5. SPARQL Query Result Forms

Variable Bindings: A sequence of (set of variable bindings) for each query pattern match.
SELECT *
WHERE { $a rdf:type $b }
to ask for bindings for all variables mentioned in the query and
SELECT $a ?b
WHERE { $a rdf:type ?b }
to list them explicitly

RDF Graph:
Describe
Resources:

An RDF graph describing resources either given by URI
DESCRIBE <http://example.org/thing>
or by binding variables using the same syntax as SELECT.
DESCRIBE ?person
WHERE { ?person foaf:name “Dave” }

Build an
RDF graph

An RDF graph made by substituting variables into a triple template.
CONSTRUCT { ?a foaf:knows ?b }
WHERE { ?a ex:KnowsQuiteWell ?b }

Boolean: True if the query pattern could be answered.
ASK
WHERE { ?a rdf:type foaf:Person }

6. Query Results Ordering and Modifying

The optional modifications on query results are performed in the following order:
1. DISTINCT to ensure solutions in the sequence are unique
1. ORDER BY ordering solutions sequences by variable, expression or extension function call:

ORDER BY DESC(?date) ?title ASC(?familyName) my:fn(?a)
in descending order by date, by ascending title order, by familyName ascending, by extension
function

2. LIMIT n to restrict the number of solutions to n
3. OFFSET m to start the results in the solution from item m

7. Values – datatypes, expressions and operators

Supported datatypes: RDF Terms, xsd:boolean, xsd:string, xsd:double,
xsd:float, xsd:decimal, xsd:integer and xsd:dateTime

Logical operators: Logical: A|| B, A && B, !A, (A)
Comparison (A op B): =, !=, <, >, <=, >=

Arithmetic operators: Unary: +A, -A
Binary (A op B): +, -, *, /

RDF operators: Boolean: BOUND(A), isIRI(A) / isURI(A),
isBlank(A), isLiteral(A)

String: STR(A), LANG(A), DATATYPE(A)
String Match operator: REGEX(string expression, pattern expression

[,flags expression])
pattern syntax is from XQuery 1.0 / XPath 2.0,
XML Schema, similar to Perl. flags are s, m, i, x

Extension Functions and
Explicit Type Casting:

QName(expression, expression, ...)

Automatic Type
Promotion:

from xsd:decimal to xsd:float
from xsd:float to xsd:double

8. Turtle RDF Syntax Reference (Turtle 2006-01-2121 <http://www.dajobe.org/2004/01/turtle/>)

Turtle (Terse RDF Triple Language) describes triples in an RDF graph and allows abbreviations.
Triple Patterns in SPARQL can use the same abbreviations.

RDFTerms:
IRI < IRI > (<> is the base IRI, often the document IRI)
Literal: ”string” or ”string”@language or ^^< datatype IRI >
Blank Node: _: name or [] for an anonymous blank node

@prefix operator: IRIs can be written as XML-style QNames by defining a prefix / IRI binding:
@prefix dc: <http://purl.org/dc/elements/1.1/> .

Triples: 3 RDF terms with whitespace separating them as necessary, and '.' between triples:
<> dc:title "SPARQL Reference" .
<> dc:date “2006-02-06”^^xsd:dateTime .

, operator: Triples with the same subject and predicate may be abbreviated with ',':
<http://example.org/book> dc:title “My Book”, “Mein Buch”@de .

; operator: Triples with the same subject may be abbreviated with ';':
<http://work.example.org/> dc:title “My Workplace”;

dc:publisher “My Employer” .

[...] operator: A sequence of (predicate object) pairs may be put inside [...] and a blank node
subject will be assigned to them:

<> dc:creator [foaf:name “Dave”; foaf:homePage <http:...>] .
[] operator: A blank node:

[] a ex:Book [dc:title “Thing”; dc:description “On shelf”] .
a predicate: The common rdf:type QName may be abbreviated by the keyword a as a predicate:

<> a Foaf:Document .

Decimal integers: Positive or negative decimal integers can be written as (type xsd:integer)
<> ex:sizeInBytes 12345 .

Decimal numbers: Positive or negative decimal numbers can be written as (type xsd:decimal)
<> ex:shoeSize 8.5 .

(...) collections: RDF collections can be written inside (...) as space-separated lists of contents:
<> ex:contents (ex:apple ex:banana ex:pear) .

9. Example SPARQL Query

BASE <http://example.org/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
This is a relative IRI to BASE above
PREFIX ex: <properties/1.0#>

SELECT DISTINCT $person ?name $age
FROM <http://rdf.example.org/personA.rdf>
FROM <http://rdf.example.org/personB.rdf>
WHERE { $person a foaf:Person ;

foaf:name ?name.
OPTIONAL { $person ex:age $age } .
FILTER (!REGEX(?name, “Bob”))

}
ORDER BY ASC(?name) LIMIT 10 OFFSET 20

