
SPARQLRDFQuery Language Reference v1.8
Copyright © 2005, 2006 Dave Beckett.
Latest version: <http://www.dajobe.org/2005/04-sparql/>
Comments to: dave@dajobe.org

1. RDF Model and SPARQL RDF Terms Syntax

RDF Graph: A set of RDF Triples

RDFTriple: A triple (3-tuple) of:

Subject: IRI
or Blank Node

Predicate: IRI

Object: IRI or Blank Node
or Literal

URI: An absolute IRI which may include a # fragment.
<http://www.w3.org/>
<http://example.org/#fragment>
<abc.rdf> Relative IRI resolved against base IRI.
<> Base IRI, usually the query document IRI
ex:name IRI shorthand using XML-style prefix ex and local name.

Declared with PREFIX (SPARQL) or @prefix (Turtle)

RDF Literal: A Unicode string with an optional language tag.
“hello” “bonjour”@fr

RDFTyped Literal: A Unicode string and datatype IRI for encoding datatypes.
“abc”^^<http://example.org/myDatatype>
abbreviated with an XML QName style as:
“10”^^xsd:integer
Short forms for several common datatypes:
-10 “-10”^^xsd:integer
1.2345 “1.2345”^^xsd:decimal
true “true”^^xsd:boolean

Blank Node: A node in a graph with a local name. The scope of the name is the RDF graph.
_:node

2. Common RDF Namespaces and Prefixes

Namespace Common Prefix Namespace URI
RDF rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
Dublin Core dc: http://purl.org/dc/elements/1.1/
FOAF foaf: http://xmlns.com/foaf/0.1/
XML Schema Datatypes xsd: http://www.w3.org/2001/XMLSchema#
RDFS rdfs: http://www.w3.org/2000/01/rdf-schema#
OWL owl: http://www.w3.org/2002/07/owl#

3. SPARQL Query Language Reference

Based on SPARQL Query 23 Nov 2005 <http://www.w3.org/TR/2005/WD-rdf-sparql-query-20051123/>.

RDFTerm: A part of an RDF Triple. An IRI, Blank Node or a Literal.
<uri> _:b1 “Literal”@en “abc123”^^my:datatype

Query Variable: Identifiers for binding to RDF Terms in matches.
?a / $b or in lists: $name $title $place

Anonymous
Query Variable:

Blank Nodes in a graph pattern act as variables that cannot be SELECTed
_:abc

Triple Pattern: An RDF Triple with Query Variables or blank nodes allowed in each term:
<http://example.org/abc> ?x “Hello”
?subject ?predicate ?object
Turtle abbreviations can be used for Triple Patterns, see Section 4.

Graph Pattern: A block that matches part of the queried RDF graph.
Basic
Graph Pattern:

A set of Triple Patterns binding RDF Terms in the graph to variables.
Written as a {..} block with '.' separating the triple patterns:
{ <http://example.org/abc> ?y “Hello” .
?subject $predicate “Literal” }

Group
Graph Pattern:

A graph pattern containing multiple graph patterns which must all match
{ { ?person rdf:type foaf:Person }
{ ?person foaf:name “Dave” } }

Optional
Graph Pattern:

A graph pattern which may fail to match and provide bindings but not
cause the entire query to fail. Written with OPTIONAL before a graph
pattern.
OPTIONAL { ?person foaf:nick ?nick }

Union
Graph Pattern:

A pair of graph patterns any of which may match and bind the same
variables. Written with the UNION keyword between two graph patterns.
{ ?node ex:name ?name } UNION
{ ?node vcard:FN ?name }

Graph
Graph Pattern:

A keyword for specifying a graph name to use or to return a graph name as a
binding. Written with the GRAPH keyword before a graph pattern.
GRAPH <http://example.org/myfoaf>
{ ?person foaf:name ?name }

GRAPH ?graph { ?person foaf:name ?name }
Value Constraints: A boolean expression in a graph pattern over query variables that constrains

matched graph patterns.
{ ?item ex:size $size . FILTER ($size < 10) }

4. SPARQL Query Language Structure

Prologue (optional) BASE <iri>
PREFIX prefix: <iri> (repeatable)

Query Result forms (required, pick 1) SELECT (DISTINCT)sequence of ?variable
SELECT (DISTINCT)*
DESCRIBE sequence of ?variable or <iri>
DESCRIBE *
CONSTRUCT { graph pattern }
ASK

Query Dataset Sources (optional) Add triples to the background graph (repeatable):
FROM <iri>
Add a named graph (repeatable):
FROM NAMED <iri>

Graph Pattern (optional, required for ASK) WHERE { graph pattern [FILTER expression]}
Query Results Ordering (optional) ORDER BY ...
Query Results Selection (optional) LIMIT n, OFFSET m

5. SPARQL Query Result Forms

Variable Bindings: A sequence of (set of variable bindings) for each query pattern match.
SELECT *
WHERE { $a rdf:type $b }
to ask for bindings for all variables mentioned in the query and
SELECT $a ?b
WHERE { $a rdf:type ?b }
to list them explicitly

RDF Graph:
Describe
Resources:

An RDF graph describing resources either given by URI
DESCRIBE <http://example.org/thing>
or by binding variables using the same syntax as SELECT.
DESCRIBE ?person
WHERE { ?person foaf:name “Dave” }

Build an
RDF graph

An RDF graph made by substituting variables into a triple template.
CONSTRUCT { ?a foaf:knows ?b }
WHERE { ?a ex:KnowsQuiteWell ?b }

Boolean: True if the query pattern could be answered.
ASK
WHERE { ?a rdf:type foaf:Person }

6. Query Results Ordering and Modifying

The optional modifications on query results are performed in the following order:
1. DISTINCT to ensure solutions in the sequence are unique
1. ORDER BY ordering solutions sequences by variable, expression or extension function call:

ORDER BY DESC(?date) ?title ASC(?familyName) my:fn(?a)
in descending order by date, by ascending title order, by familyName ascending, by extension function

2. LIMIT n to restrict the number of solutions to n
3. OFFSET m to start the results in the solution from item m

7. Values – datatypes, expressions and operators

Supported datatypes: RDF Terms, xsd:boolean, xsd:string, xsd:double, xsd:float,
xsd:decimal, xsd:integer and xsd:dateTime

Logical operators: Logical: A|| B, A && B, !A, (A)
Comparison (A op B): =, !=, <, >, <=, >=

Arithmetic operators: Unary: +A, -A
Binary (A op B): +, -, *, /

RDF operators: Boolean: BOUND(A), isIRI(A) / isURI(A),
isBlank(A), isLiteral(A)

String: STR(A), LANG(A), DATATYPE(A)
String Match operator: REGEX(string expression, pattern expression

[,flags expression])
pattern syntax is from XQuery 1.0 / XPath 2.0,
XML Schema and similar to Perl. flags are s, m, i, x

Extension Functions and
Explicit Type Casting:

QName(expression, expression, ...)

Automatic Type
Promotion:

from xsd:decimal to xsd:float
from xsd:float to xsd:double

8. Turtle RDF Syntax Reference

Turtle (Terse RDF Triple Language) describes triples in an RDF graph and allows abbreviations. Triple
Patterns in SPARQL can use the same abbreviations.

This description is based on Turtle 2006-01-21 from <http://www.dajobe.org/2004/01/turtle/>

RDFTerms:
IRI < IRI > (<> is the base IRI, often the document IRI)
Literal: ”string” or ”string”@language or ^^< datatype IRI >
Blank Node: _: name or [] for an anonymous blank node

@prefix operator: IRIs can be written as XML-style QNames by defining a prefix / IRI binding:
@prefix dc: <http://purl.org/dc/elements/1.1/> .

Triples:Written as 3 RDF terms with whitespace separating them as necessary, and '.' between triples:
<> dc:title "SPARQL Reference" .
<> dc:date “2006-02-06”^^xsd:dateTime .

, operator: Triples with the same subject and predicate may be abbreviated with ',':
<http://example.org/mybook> dc:title “My Book”, “Mein Buch”@de .

; operator: Triples with the same subject may be abbreviated with ';':
<http://work.example.org/> dc:title “My Workplace”;

dc:publisher “My Employer” .

[...] operator: A sequence of (predicate object) pairs may be put inside [...] and a blank node subject
will be assigned to them:

<> dc:creator [foaf:name “Dave”; foaf:homePage <http:...>] .
[] operator: A blank node:

[] a ex:Book [dc:title “Thing”; dc:description “On the shelf”] .
a predicate: The often-used rdf:type QName may be abbreviated by the keyword a as a predicate:

<> a Foaf:Document .

Decimal integers: Positive or negative decimal integers can be written directly (type xsd:integer)
<> ex:sizeInBytes 12345 .

Decimal numbers: Positive or negative decimal numbers can be written directly (type xsd:decimal)
<> ex:shoeSize 8.5 .

(...) collections: RDF collections can be written inside (...) as a space-separated list of the contents:
<> ex:contents (ex:apple ex:banana ex:pear) .

9. Example SPARQL Query

BASE <http://example.org/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
This is a relative IRI to BASE above
PREFIX ex: <properties/1.0#>

SELECT DISTINCT $person ?name $age
FROM <http://rdf.example.org/personA.rdf>
FROM <http://rdf.example.org/personB.rdf>
WHERE { $person a foaf:Person ;

foaf:name ?name.
OPTIONAL { $person ex:age $age } .
FILTER (!REGEX(?name, “Bob”))

}
ORDER BY ASC(?name) LIMIT 10 OFFSET 20

